Angeles, L. F., Mullen, R. A., Huang, I. J., Wilson, C., Khunjar, W., Sirotkin, H. I., McElroy, A. E., & Aga, D. S. (2019). Assessing pharmaceutical removal and reduction in toxicity provided by advanced wastewater treatment systems. Environmental Science: Water Research & Technology, 6(1), 62–77. https://doi.org/10.1039/C9EW00559E
Arnnok, P., Singh, R. R., Burakham, R., Pérez-Fuentetaja, A., & Aga, D. S. (2017). Selective Uptake and Bioaccumulation of Antidepressants in Fish from Effluent-Impacted Niagara River. Environmental Science & Technology, 51(18), 10652–10662. https://doi.org/10.1021/acs.est.7b02912
Bertram, M. G., Ecker, T. E., Wong, B. B. M., O’Bryan, M. K., Baumgartner, J. B., Martin, J. M., & Saaristo, M. (2018). The antidepressant fluoxetine alters mechanisms of pre- and post-copulatory sexual selection in the eastern mosquitofish (Gambusia holbrooki). Environmental Pollution, 238, 238–247. https://doi.org/10.1016/j.envpol.2018.03.006
Bidel, F., Di Poi, C., Budzinski, H., Pardon, P., Callewaert, W., Arini, A., Basu, N., Dickel, L., Bellanger, C., & Jozet-Alves, C. (2016). The antidepressant venlafaxine may act as a neurodevelopmental toxicant in cuttlefish (Sepia officinalis). Neurotoxicology, 55, 142–153. https://doi.org/10.1016/j.neuro.2016.05.023
Bisesi, J. H., Sweet, L. E., Hurk, P. van den, & Klaine, S. J. (2016). Effects of an antidepressant mixture on the brain serotonin and predation behavior of hybrid striped bass. Environmental Toxicology and Chemistry, 35(4), 938–945. https://doi.org/10.1002/etc.3114
Brodin, T., Fick, J., Jonsson, M., & Klaminder, J. (2013). Dilute Concentrations of a Psychiatric Drug Alter Behavior of Fish from Natural Populations. Science, 339(6121), 814–815. https://doi.org/10.1126/science.1226850
De Pedro, N., Pinillos, M. L., Valenciano, A. I., Alonso-Bedate, M., & Delgado, M. J. (1998). Inhibitory effect of serotonin on feeding behavior in goldfish: Involvement of CRF. Peptides, 19(3), 505–511. https://doi.org/10.1016/s0196-9781(97)00469-5
Emnet, P., Gaw, S., Northcott, G., Storey, B., & Graham, L. (2015). Personal care products and steroid hormones in the Antarctic coastal environment associated with two Antarctic research stations, McMurdo Station and Scott Base. Environmental Research, 136, 331–342. https://doi.org/10.1016/j.envres.2014.10.019
Focazio, M. J., Kolpin, D. W., Barnes, K. K., Furlong, E. T., Meyer, M. T., Zaugg, S. D., Barber, L. B., & Thurman, M. E. (2008). A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States—II) untreated drinking water sources. The Science of the Total Environment, 402(2–3), 201–216. https://doi.org/10.1016/j.scitotenv.2008.02.021
Focazio, M. J., Kolpin, D. W., & Furlong, E. T. (2004). Occurrence of human pharmaceuticals in water resources of the United States: A review. In Pharmaceuticals in the Environment (1st ed., pp. 91–105). Springer. https://pubs.er.usgs.gov/publication/70164321
Ford, A. T., & Fong, P. P. (2016). The effects of antidepressants appear to be rapid and at environmentally relevant concentrations. Environmental Toxicology and Chemistry, 35(4), 794–798. https://doi.org/10.1002/etc.3087
Fursdon, J. B., Martin, J. M., Bertram, M. G., Lehtonen, T. K., & Wong, B. B. M. (2019). The pharmaceutical pollutant fluoxetine alters reproductive behaviour in a fish independent of predation risk. Science of The Total Environment, 650, 642–652. https://doi.org/10.1016/j.scitotenv.2018.09.046
Gaworecki, K. M., & Klaine, S. J. (2008). Behavioral and biochemical responses of hybrid striped bass during and after fluoxetine exposure. Aquatic Toxicology (Amsterdam, Netherlands), 88(4), 207–213. https://doi.org/10.1016/j.aquatox.2008.04.011
Giggs, R. (2019, April 12). Human Drugs Are Polluting the Water—And Animals Are Swimming in It. The Atlantic. https://www.theatlantic.com/magazine/archive/2019/05/pharmaceutical-pollution/586006/
Harvey, M. (2013, March 15). Your tap water is probably laced with antidepressants. Salon. https://www.salon.com/2013/03/14/your_tap_water_is_probably_laced_with_anti_depressants_partner/
Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999−2000: A National Reconnaissance. Environmental Science & Technology, 36(6), 1202–1211. https://doi.org/10.1021/es011055j
Kreke, N., & Dietrich, D. R. (2008). Physiological Endpoints for Potential SSRI Interactions in Fish. Critical Reviews in Toxicology, 38(3), 215–247. https://doi.org/10.1080/10408440801891057
Lepage, O., Larson, E. T., Mayer, I., & Winberg, S. (2005). Serotonin, but not melatonin, plays a role in shaping dominant–subordinate relationships and aggression in rainbow trout. Hormones and Behavior, 48(2), 233–242. https://doi.org/10.1016/j.yhbeh.2005.02.012
Martin, J. M., Bertram, M. G., Saaristo, M., Fursdon, J. B., Hannington, S. L., Brooks, B. W., Burket, S. R., Mole, R. A., Deal, N. D. S., & Wong, B. B. M. (2019). Antidepressants in Surface Waters: Fluoxetine Influences Mosquitofish Anxiety-Related Behavior at Environmentally Relevant Levels. Environmental Science & Technology, 53(10), 6035–6043. https://doi.org/10.1021/acs.est.9b00944
Martin, J. M., Nagarajan-Radha, V., Tan, H., Bertram, M. G., Brand, J. A., Saaristo, M., Dowling, D. K., & Wong, B. B. M. (2020). Antidepressant exposure causes a nonmonotonic reduction in anxiety-related behaviour in female mosquitofish. Journal of Hazardous Materials Letters, 1, 100004. https://doi.org/10.1016/j.hazl.2020.100004
Martin, J. M., Saaristo, M., Bertram, M. G., Lewis, P. J., Coggan, T. L., Clarke, B. O., & Wong, B. B. M. (2017). The psychoactive pollutant fluoxetine compromises antipredator behaviour in fish. Environmental Pollution, 222, 592–599. https://doi.org/10.1016/j.envpol.2016.10.010
Martin, J. M., Saaristo, M., Tan, H., Bertram, M. G., Nagarajan-Radha, V., Dowling, D. K., & Wong, B. B. M. (2019). Field-realistic antidepressant exposure disrupts group foraging dynamics in mosquitofish. Biology Letters, 15(11), 20190615. https://doi.org/10.1098/rsbl.2019.0615
Painter, M. M., Buerkley, M. A., Julius, M. L., Vajda, A. M., Norris, D. O., Barber, L. B., Furlong, E. T., Schultz, M. M., & Schoenfuss, H. L. (2009). Antidepressants at environmentally relevant concentrations affect predator avoidance behavior of larval fathead minnows (Pimephales promelas). Environmental Toxicology and Chemistry, 28(12), 2677–2684. https://doi.org/10.1897/08-556.1
Pérez-Maceira, J. J., Otero-Rodiño, C., Mancebo, M. J., Soengas, J. L., & Aldegunde, M. (2016). Food intake inhibition in rainbow trout induced by activation of serotonin 5-HT2C receptors is associated with increases in POMC, CART and CRF mRNA abundance in hypothalamus. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, 186(3), 313–321. https://doi.org/10.1007/s00360-016-0961-9
Pharmaceuticals in the Water Environment. (2010). National Association of Clean Water Agencies.
Polverino, G., Martin, J. M., Bertram, M. G., Soman, V. R., Tan, H., Brand, J. A., Mason, R. T., & Wong, B. B. M. (2021). Psychoactive pollution suppresses individual differences in fish behaviour. Proceedings of the Royal Society B: Biological Sciences, 288(1944), 20202294. https://doi.org/10.1098/rspb.2020.2294
Richmond, E. K., Rosi, E. J., Walters, D. M., Fick, J., Hamilton, S. K., Brodin, T., Sundelin, A., & Grace, M. R. (2018). A diverse suite of pharmaceuticals contaminates stream and riparian food webs. Nature Communications, 9(1), 4491. https://doi.org/10.1038/s41467-018-06822-w
Schultz, M. M., Furlong, E. T., Kolpin, D. W., Werner, S. L., Schoenfuss, H. L., Barber, L. B., Blazer, V. S., Norris, D. O., & Vajda, A. M. (2010). Antidepressant pharmaceuticals in two U.S. effluent-impacted streams: Occurrence and fate in water and sediment, and selective uptake in fish neural tissue. Environmental Science & Technology, 44(6), 1918–1925. https://doi.org/10.1021/es9022706
Tan, H., Polverino, G., Martin, J. M., Bertram, M. G., Wiles, S. C., Palacios, M. M., Bywater, C. L., White, C. R., & Wong, B. B. M. (2020). Chronic exposure to a pervasive pharmaceutical pollutant erodes among-individual phenotypic variation in a fish. Environmental Pollution, 263, 114450. https://doi.org/10.1016/j.envpol.2020.114450
Valenti, T. W., Gould, G. G., Berninger, J. P., Connors, K. A., Keele, N. B., Prosser, K. N., & Brooks, B. W. (2012). Human therapeutic plasma levels of the selective serotonin reuptake inhibitor (SSRI) sertraline decrease serotonin reuptake transporter binding and shelter-seeking behavior in adult male fathead minnows. Environmental Science & Technology, 46(4), 2427–2435. https://doi.org/10.1021/es204164b
Weinberger, J., & Klaper, R. (2014). Environmental concentrations of the selective serotonin reuptake inhibitor fluoxetine impact specific behaviors involved in reproduction, feeding and predator avoidance in the fish Pimephales promelas (fathead minnow). Aquatic Toxicology, 151, 77–83. https://doi.org/10.1016/j.aquatox.2013.10.012